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Abstract
A class of variational methods that can be used in solving either bound state
problems or those that involve scattering by a potential is reviewed with
particular regard to the constraints that it is necessary to impose upon the
basis functions. The R-matrix method is also reviewed and it is shown that
there is a formal similarity between the two methods but that the basis functions
of the R-matrix method are excluded as a basis for the variational procedure.
As a result, the convergenceproperties of the two methods differ, the variational
procedures converge rapidly but the R-matrix method needs a ‘correction’ to
improve the convergence. The relations between the variational procedures
discussed and two other methods, one due to Kohn (1948) and one due to
Rudge (1973), are also mentioned.

PACS numbers: 31.15.Pf, 03.65.−w

1. Introduction

The R-matrix method (Wigner and Eisenbud 1947, Lane and Thomas 1958, Duke and Wigner
1964, Burke and Robb 1975) is a highly successful procedure that is extensively used in atomic
physics. One disadvantage of the R-matrix method however lies in its slow convergence, a
defect that is normally remedied by using the so-called ‘Buttle correction’ (Buttle 1967).
Variational methods, on the other hand, accounts of which appear in the literature (Nesbet
1980, Abdel-Raouf 1982, 1984, Adikhari 1998), have enjoyed less popularity in part because
of the apparent variety of such methods and in part because of perceived convergence problems.
In fact the two methods are formally very similar, and the connection between one of the Kohn
(1948) variational methods and the R-matrix method has been described by Nesbet (1980).

The purpose of this paper is to reexamine several variational methods and to demonstrate
the formal similarity that they have with the R-matrix method and the differences that arise,
through the constraints on the basis functions, in the context of potential scattering. In
particular, it is shown that the ‘R-matrix basis’ is not a suitable basis for the variational method
which is rapidly convergent and does not require a Buttle correction.
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2. Theory

2.1. The eigenvalue problem

Consider the equation

[L0 + λj ]fj (r) = 0 (1)

where 0 � r � a, subject to the boundary conditions

f (0) = 0: k−1f ′(a) sin θ + f (a) cos θ = 0 (2)

where k and θ are parameters and

L0 = d2

dr2
− 2mV (r). (3)

For a two-body problem V (r) is the potential and m is the reduced mass. Using the notation

〈f 〉 ≡
∫ a

0
f (r) dr (4)

define the functionals

L0(f ) = −〈f ′2〉 − 2m〈f Vf 〉 (5)

N(f ) = 〈f 2〉 (6)

and

K1(f ) = 2f (a)f ′(a) cos2 θ + sin θ cos θ [k−1f ′2(a) − kf 2(a)] − 2f (0)f ′(0). (7)

It is seen that

δ(L0 + K1 + λN) = 2〈δf (L0 + λ)f 〉 + 2(f (a) cos θ

+ k−1f ′(a) sin θ)δ(f ′(a) cos θ − kf (a) sin θ) − 2f (0)δf ′(0) (8)

and is zero if f is an exact solution of (1) that satisfies (2). Conversely if

δ(L0 + K1 + λN) = 0 (9)

for arbitrary δf then the solution of (9) satisfies (1) and (2). On choosing a basis t(r) a linear
trial function can be written

f (r) = c̃t(r) (10)

where c is a vector of coefficients and the tilde is used to denote a transpose. A suitable
basis should be minimal (cf Mikhlin 1971) which includes the particular choice of a set of
orthogonal polynomials.

If the basis is chosen to satisfy the essential boundary conditions

t(a) cos θ + k−1t′(a) sin θ = 0 t(0) = 0 (11)

then the boundary terms in (8) vanish and all the solutions of the variational principle (9)
satisfy (2) identically. If not, then it follows from (8) that provided the conditions

t′(a) cos θ − kt(a) sin θ �= 0 t′(0) �= 0 (12)

are satisfied, then the solutions of (9) will converge to the boundary conditions (2). Using (10)
in (9) gives the linear equations

[L0 + K1 + λN]c = 0 (13)
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where

L0 = −〈t′t̃′〉 − 2m〈tV t̃〉 (14)

N = 〈tt̃〉 (15)

and

K1 = sin θ cos θ [k−1t′(a)t̃
′
(a) − kt(a)t̃(a)] + cos2 θ [t(a)t̃

′
(a) + t′(a)t̃(a)]

− t(0)t̃
′
(0) − t′(0)t̃(0). (16)

If the eigenvalues in (13) are λj and the eigenvectors are cj then the eigenfunctions are

wj(r) = c̃jt(r). (17)

The eigenfunctions that correspond to smaller λj converge to the boundary conditions more
rapidly than those that correspond to larger λj . If θ = 0 then wj(a) ∼= 0 and if θ = π/2 then
w′

j (a) ∼= 0.

2.2. Continuum variational principles

Consider the equation

Lf ≡ [L0 + k2]f (r) = 0 (18)

subject to the boundary conditions

f (0) = 0: k−1f ′(a) sin θ + f (a) cos θ = 1. (19)

The boundary conditions (19) reflect the fact that in this case f (a), f ′(a) or any linear
combination of these can be specified beforehand but not the ratio f ′(a)/f (a). The particular
case of θ = 0 was treated by Rudge (2000). On defining

K2 = 2[kf (a) sin θ − f ′(a) cos θ ] (20)

it is seen that

δ(L0 + K1 + K2 + k2N) = 2〈δfLf 〉 + 2(f (a) cos θ

+ k−1f ′(a) sin θ − 1)δ(f ′(a) cos θ − kf (a) sin θ) − 2f (0)δf ′(0). (21)

In this case the variational principle

δ(L0 + K1 + K2 + k2N) = 0 (22)

converges to the boundary conditions at r = 0 and r = a provided that the basis satisfies the
conditions

kt(a) cos θ + t′(a) sin θ �= 0 t′(a) cos θ − kt(a) sin θ �= 0 t′(0) �= 0. (23)

On using the linear trial function (10), (22) gives the linear equations

[L0 + K1 + k2N]c = t′(a) cos θ − kt(a) sin θ. (24)

If V (r) ≡ 0 for r � a then, on equating solutions and their first derivatives at r = a, phase
shifts, η, are defined by

cot(ka + θ + η) = f ′(a) cos θ − kf (a) sin θ

f ′(a) sin θ + kf (a) cos θ
. (25)

On convergence the denominator has the value k. One procedure is to compute η by replacing
f in (25) by the variationally computed function fv = t̃c. The variational solution and its
derivative at r = a are then continuous at r = a whether or not convergencehas been achieved.
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An alternative procedure, that can be used prior to convergence, is to use the function fv in the
numerator of (25) and replace the denominator by its exact value k. This procedure is justified
by observing that, on choosing t(0) = 0, so that δf (0) = 0, then (cf Kohn 1948)

〈fvLfv〉 = fvδf
′ − f ′

vδf |a + 〈δf L δf 〉. (26)

But,

〈fvLfv〉 ≡ c̃[L0 + k2N + tt̃′|a]c (27)

and so by virtue of (24) it follows that, with f (0) = 0,

〈fvLfv〉 = −(f ′
v cos θ − kfv sin θ)δ(f cos θ + k′f ′ sin θ) (28)

where the functions are evaluated at r = a. On equating (26) and (28) it follows that the error
in the numerator in (25) is of second order and so an improved or ‘corrected’ value of the
phase shift, ηc, prior to convergence, is given by

k cot(ka + θ + ηc) = f ′
v cos θ − kfv sin θ. (29)

If (1−fv cos θ −k−1f ′
v sin θ) �= 0 then the derivative of the solution that contains ηc for r � a

differs from the derivative of the solution for r � a at their common point. However, if the
basis is chosen so that t(0) = 0 and

det[L0 + k2N + tt̃′|a] = 0 (30)

(cf Rudge 1973, 1975) then a solution of (24) is given by c = c0 where

[L0 + k2N + tt̃′|a]c0 = 0 c̃0[t(a) cos θ + k−1t′(a) sin θ ] = 1. (31)

In this case (1 − fv cos θ − k−1f ′
v sin θ) = 0, there is a zero ‘correction’ and the solution and

its first derivative are continuous at r = a. It can be seen that all three methods give the same
values if the basis t is replaced by any linear combination of itself.

2.3. Solution of the linear equations

The solution of (24) can be performed using Gauss elimination but this is unstable if the matrix
is nearly singular. The solutions can be obtained in a numerically stable way, and for all values
of k2 (provided that the basis is independent of k2), using a well-known technique (cf Courant
and Hilbert 1953). Let the matrix of eigenvectors cj in (13) be

C = [c1 · · · cn] (32)

normalized so that C̃NC = I. Then

C̃[L0 + K1]C = −diag(λj ). (33)

and the solution of (24) can now be written as

c = C[diag(k2 − λj )
−1]C̃[t′(a) cos θ − kt(a) sin θ ]. (34)

In terms of the eigenfunctions w = C̃t, the variational solution of (18) and (19) is therefore

fv(r) = cos θ
∑

j

wj (r)w
′
j (a)

k2 − λj

− k sin θ
∑

j

wj (r)wj (a)

k2 − λj

(35)

and on using (29)

k cot(ka + θ + ηc) = cos2 θ
∑

j

w′
j (a)w′

j (a)

k2 − λj

− k sin 2θ
∑

j

w′
j (a)wj(a)

k2 − λj

+ (k sin θ)2
∑

j

wj (a)wj(a)

k2 − λj

. (36)
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It is important to observe that the wj(r) are the variational solutions of the eigenvalue problem

[L0 + λj ]wj(r) = 0 wj(0) = 0 k−1w′
j (a) sin θ + wj(a) cos θ = 0. (37)

In particular the conditions (23) on the choice of basis are incompatible with the choice (11)
for which the solutions satisfy the boundary conditions exactly.

2.4. The R-matrix method

The R-matrix method (cf Lane and Thomas 1958, Burke and Robb 1975) is based on the
solutions of the eigenvalue problem

L0un = −k2
nun (38)

subject to the boundary conditions

un(0) = 0 au′
n(a) − bun(a) = 0. (39)

The eigenvalues k2
n can be positive or negative. The eigenfunctions un(r) are orthogonal and

can be normalized so that

〈umun〉 = δmn. (40)

It can be seen that

〈unLf 〉 = [unf
′ − u′

nf ]a0 + 〈f L un〉 = un(a)[f ′ − bf/a] +
(
k2 − k2

n

) 〈unf 〉
so that

〈unf 〉 = un(a)[−f ′ + bf/a]
/(

k2 − k2
n

)
. (41)

Assuming that the Fourier series

f (r) =
∑

n

〈f un〉un(r) (42)

converges to f (a) at r = a, it is seen that

f (a)

af ′(a) − bf (a)
= R (43)

where

R = a−1
∑

n

un(a)un(a)

k2
n − k2

(44)

is the R-matrix. If V (r) = 0 for r > a then, on choosing b = 0, the phase shift is given by

(ka)−1 tan(ka + η) = R. (45)

The convergence of (44) may be slow but the R-matrix method can be improved (cf Burke
and Robb 1975) using a device due to Buttle (1967).

Suppose that

M0 = d2

dr2
− 2mV0(r)

and that the solutions of

(M0 + k2)ϕ(r) = 0 (46)

and the eigenfunctions vn that satisfy

M0vn = −k′2
n vn (47)

are known.
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Table 1. The relative errors in the phase shift ε = 1 − η/ηexact as a function of the number of
terms, N, where εR refers to (44), εB to (48) and εv to the variational method.

N εR εB εv

4 8.90, −2 9.19, −5 2.0, −7
8 4.46, −2 1.17, −5 1.2, −8

12 2.97, −2 3.48, −6
16 2.23, −2 1.47, −6
20 1.78, −2 7.53, −7
24 1.49, −2 4.36, −7

The Buttle corrected R-matrix is then

RB =
[
aϕ′

ϕ
− b

]−1

+ a−1
N∑

n=1

un(a)un(a)

k2
n − k2

− a−1
N∑

n=1

vn(a)vn(a)

k′2
n − k2

. (48)

Essentially the terms for n > N in (44), which would be neglected in a truncated expansion,
are replaced by the corresponding terms for the potential V0.

On choosing θ = π/2 there is a clear similarity between (45) and (36). The difference
lies in the fact that in the R-matrix method the un(r) are exact solutions of (38) and (39) while
the functions wj(r) in (36) are the variational solutions of (37) and in particular do not satisfy
the boundary conditions exactly. This apparent slight difference makes a large difference
to the relative convergence of the methods as can be seen from the trivial example of the
square well potential

2mV (r) =
{−1 for r � 1

0 for r > 1.

In this case (18) becomes[
d2

dr2
+ K2

]
f (r) = 0 (49)

where K2 = 1 + k2. The R-matrix basis functions for b = 0 in this case are

un(r) =
√

2 sin knr kn = (n − 1/2)π n � 1. (50)

For this case, wherein a = 1, the R-matrix method (45) therefore gives

k−1 tan(k + η) = 2
N∑

n=1

1

[(n − 1/2)π]2 − K2
. (51)

The right-hand side (cf Duke and Wigner 1964, Lane and Thomas 1958, Knopp 1947) is
recognized as the truncated partial fraction, or Mittag–Leffler expansion of K−1 tan K .

A possible, rather good choice of V0, from which a Buttle correction can be computed is

2mV (r) =
{−1/2 r � 1

0 r > 1.

A variational calculation was conducted by taking the value θ = 0 and choosing, in harmony
with (23), the basis

tn(r) = rTn−1(r) n � 1

where Tn(r) is a Chebyshev polynomial (Abramowitz and Stegun 1970). The relative errors
of the three methods are displayed in table 1.

The convergence of (44) is clearly slow though much improved by the Buttle correction:
this contrasts strongly with the variational method in which different basis functions are used
and much faster convergence is achieved.
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2.5. Kohn’s variational principles

Kohn (1948) presented two variational methods. The second of these has been widely used
but has unsatisfactory features (cf Nesbet 1980, Rudge 1973). In particular the results are not
independent of the trivial transformation in which the basis is replaced by a linear combination
of itself. The first method has been relatively little used, but gives, as noted by Nesbet (1980)
a value of f (a)/f ′(a), or R-matrix.

Kohn observed that if f (r) is a solution of (18) then the identity

L0(f ) + k2N(f ) + µf 2(a) = 0 (52)

holds where µ = f ′(a)/f (a). He inferred from this that the variational principle (9), that is
normally used to give eigenvalues λ for fixed µ, could equally well be used to determine µ

for a fixed λ = k2. Assuming that f (0) = 0,

δ[L0 + k2N + µf 2(a)] = 2〈δf Lf 〉 − 2δf (a)[f ′(a) − µf (a)] (53)

and it would appear that the variational principle δ(L0 + K1 + k2N) = 0 implies that Lf = 0
only if the essential boundary condition f ′(a) = µf (a) is satisfied. However, assuming that
δ(L0 + K1 + k2N) = 0 is valid and that the basis t(r) satisfies t(0) = 0, a linear trial function
gives the equations:

[L0 + k2N + µt(a)t̃(a)]c = 0 (54)

and a value of µ can be sought that gives a non-trivial c. Kohn observed that, since t(a)t̃(a)

is of unit rank, (54) is a linear equation for µ.
It is observed that on choosing θ = π/2 in (24) the equation becomes

[L0 + k2N]c0 = −kt(a). (55)

It follows that c = c0 is a solution of (54) and that the corresponding value of µ is

µ = k/[c̃t(a)] = k/fv(a). (56)

Therefore the results of the apparently different procedures (24) and (54) are in fact
the same. The phase shift can again be computed in two ways, firstly, as in (25),
k cot(ka + η) = f ′(a)/f (a) and secondly as in (29) as cot(ka + ηc) = 1/fv(a) or

k cot(ka + ηc) = µ. (57)

3. Concluding remarks

A class of variational procedures has been reviewed, one member of which, for θ = 0, was
presented by Rudge (2000). The linear equations that arise from the variational method can
be solved, whatever choice of basis is made, in a manner that gives a result similar in form
to an R-matrix expansion. The difference lies in the fact that a valid R-matrix basis, that
satisfies a mixed boundary condition exactly at r = a, is excluded as an appropriate basis for
the variational principles. On using any suitable basis, comprising for example orthogonal
polynomials, the variational method converges more rapidly than the R-matrix method and
does not require the device of a Buttle correction. One of the Kohn variational methods, that
appears formally different, has been shown to be equivalent to one of the methods discussed
here. The ‘consistent procedure’, advocated by Rudge (1973, 1975), is also equivalent to
these methods if the further constraint (30) is placed on the basis. It can be seen that if the
R-matrix basis is sought variationally, as discussed in section 2.1, but in such a way that (11)
is not satisfied, then the R-matrix and variational procedures become equivalent.
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